公式
グルサの定理
$$f^{(n)}(a)=\frac{n!}{2\pi i}\int_C\frac{f(z)}{(z-a)^{n+1}}\,dz \qquad(n\geq 0)$$
留数定理
$$\begin{align*}
\frac{1}{2\pi i}\int_C f(z)\,dz&=\sum_{a}\frac{1}{(n-1)!}\lim_{z\to a}\frac{d^{n-1}}{dz^{n-1}}(z-a)^nf(z)\\
&=\sum_{a}\text{Res}_{z=a}f(z)
\end{align*}$$
フーリエ変換 (Fourier Transform)
$$\begin{align*}
\mathcal{F}[f](\xi)&=\hat{f}(\xi)=\int_{-\infty}^{\infty}f(x)e^{-2\pi i x\xi}\,dx\\
f(x)&=\int_{-\infty}^{\infty}\hat{f}e^{2\pi i x \xi}\,dx
\end{align*}$$
ラプラス変換 (Laplace Transform)
$$\begin{align*}
\mathcal{L}(s)&=F(s)=\int_0^\infty f(t)e^{-st}\,dt\\
f(t)&=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}F(s)e^{st}\,ds
\end{align*}$$
メリン変換 (Mellin Transform)
$$\begin{align*}
\mathcal{M}[f](s)&=\varphi(s)=\int_{0}^{\infty}f(x)x^{s-1}\,dx\\
f(x)&=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\varphi(s)x^{-s}\,ds
\end{align*}$$
ポアソンの和公式 (Poisson Sum)
$$\begin{align*}
\sum_{n\in\mathbb{Z}}f(n)=\sum_{n\in\mathbb{Z}}\mathcal{F}[f](n)
\end{align*}$$
分数階微分
$$\begin{align*}
D^{-\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_{0}^{x}(x-t)^{\alpha-1}f(t)\,dt
\end{align*}$$
複素数階微分
$$\begin{align*}
D^\nu F(x)=\int_{0}^{x}Y_{-\nu}(x-y)F(y)\,dy=\left\{\begin{array}{ll}
\displaystyle\frac{1}{\Gamma(-\nu)}\int_0^x(x-y)^{-(\nu+1)}\theta(x-y)F(y)\,dy & (\nu\neq1,\ 2,\ 3,\ \cdots)\\
\displaystyle\int_0^x\delta^{(\nu)}(x-y)F(y)\,dy & (\nu=1,\ 2,\ 3,\ \cdots)
\end{array}\right.
\end{align*}$$
正規化積 (Regularized Product)
丼積